

    
      
          
            
  
Catalyst

This document refers to the Catalyst API which was first introduced in
ParaView 5.9. For earlier versions of Catalyst, please refer to earlier docs [https://www.paraview.org/files/catalyst/docs/ParaViewCatalystUsersGuide_v2.pdf].


Contents:


	What is Catalyst?

	Build and Install

	Catalyst for Simulation Developers

	Catalyst for Implementation Developers

	Debugging and Catalyst Replay

	Debugging Catalyst








            

          

      

      

    

  

    
      
          
            
  
What is Catalyst?

Catalyst is an API specification developed for simulations (and other
scientific data producers) to analyze and visualize data in situ.

It also includes the following:


	A light-weight implementation of the Catalyst API. This implementation
is called stub.


	An SDK for developers to develop implementations of the Catalyst API to perform
custom data processing and visualization tasks.




The Catalyst API uses ‘C’ and is binary compatible with different
implementations of the API making it easier to change the implementation
at runtime.


Relationship with ParaView

Starting with 5.9, ParaView releases come with an implementation of the Catalyst
API. This implementation can be used in lieu of the stub to analyze and
visualize simulation results using ParaView’s data-processing and
visualization capabilities.



Relationship with Conduit

The Catalyst API uses Conduit [https://llnl-conduit.readthedocs.io/en/latest/index.html] for describing data and other parameters
which can be communicated between a simulation and Catalyst.

Conduit provides a standard way to describe computational simulation meshes.
This is called the Mesh Blueprint [https://llnl-conduit.readthedocs.io/en/latest/blueprint_mesh.html#mesh-blueprint]. ParaView’s implementation of the Catalyst
API supports a subset of the Mesh Blueprint. Simulations that can use the Mesh
Blueprint to describe their data can directly use ParaView’s Catalyst
implementation for in situ analysis and visualization.



ParaView Catalyst

ParaView Catalyst is the name now used to refer to ParaView’s implementation of the
Catalyst API. Prior to this API separation (i.e. ParaView 5.8 and earlier),
ParaView Catalyst or simply Catalyst was used to denote the in situ API together
with the data analysis and visualization capabilities it provided. In other words,
the in-situ capabilities of ParaView were collectively called Catalyst.

With ParaView 5.9, while legacy uses will still be supported for a few more
releases, we use the names to refer to specific components:


	Catalyst: the API and SDK described here.


	ParaView: the parallel data analysis and visualization application and framework.


	ParaView Catalyst: the implementation of the Catalyst API that uses ParaView for
in situ data analysis and visualization.




ParaView Catalyst supports several ways for simulations to describe
computational meshes and fields. One way is to use Conduit’s Mesh Blueprint [https://llnl-conduit.readthedocs.io/en/latest/blueprint_mesh.html#mesh-blueprint].
Another way is to use Fides [https://gitlab.kitware.com/vtk/fides].

Furthermore, developers can develop their own
implementations of the Catalyst API and still use ParaView’s capabilities for
in situ data processing and visualization. ParaView provides API [https://kitware.github.io/paraview-docs/nightly/cxx/group__Insitu.html] that
such developers can use to initialize and invoke ParaView in situ.



Catalyst API Implementations

Known implementations of the Catalyst API include:


	ParaView Catalyst [https://docs.paraview.org/en/latest/Catalyst/index.html]


	Adios Catalyst [https://gitlab.kitware.com/paraview/adioscatalyst]


	Ascent Catalyst






License

Catalyst is distributed under the OSI-approved BSD 3-clause License. See
here [https://gitlab.kitware.com/paraview/catalyst/-/blob/master/License.txt] for details.



Citing

When citing Catalyst in your scientific research, please mention the following work to support increased visibility and dissemination of our software:

Ayachit, U., Bauer Andrew C., Boeckel Ben, Geveci Berk, Moreland Kenneth, O`Leary Patrick, Osika Tom  (2021). Catalyst Revised: Rethinking the ParaView in Situ Analysis and Visualization API. In: Jagode, H., Anzt, H., Ltaief, H., Luszczek, P. (eds) High Performance Computing. ISC High Performance 2021. Lecture Notes in Computer Science(), vol 12761. Springer, Cham. https://doi.org/10.1007/978-3-030-90539-2_33





For your convenience here is a bibtex entry:

@InProceedings{catalyst_revised2021,
  author="Ayachit, Utkarsh and Bauer, Andrew C.  and Boeckel, Ben and Geveci, Berk and Moreland, Kenneth and O'Leary, Patrick and Osika, Tom",
  editor="Jagode, Heike and Anzt, Hartwig and Ltaief, Hatem and Luszczek, Piotr",
  title="Catalyst Revised: Rethinking the ParaView in Situ Analysis and Visualization API",
  booktitle="High Performance Computing",
  year="2021",
  publisher="Springer International Publishing",
  address="Cham",
  pages="484--494",
  isbn="978-3-030-90539-2",
  doi="10.1007/978-3-030-90539-2_33"
}









            

          

      

      

    

  

    
      
          
            
  
Build and Install


Obtaining the source

To obtain the Catalyst source locally, clone the official
code repository using Git [https://git-scm.com/].

git clone https://gitlab.kitware.com/paraview/catalyst.git







Building

Catalyst uses CMake to generate build system scripts and projects, such as
Makefiles or Ninja build files. While IDE generators (Xcode and Visual Studio)
are supported, Ninja [https://ninja-build.org] is highly recommended.

To do a fresh build, start with an empty directory as follows:

mkdir catalyst-build
cd catalyst-build
ccmake -G Ninja [path to catalyst source directory]

# do the build
cmake --build .

# optionally, run tests
ctest

# do the install
cmake --install .





ccmake is a graphical GUI that lets you specify various options for CMake.
On Windows cmake-gui can be used.
Alternately, those options can be specified on command line to cmake using
-Doption:type=value (or -Doption=value) parameters as follows:

cmake -G Ninja -DCATALYST_BUILD_TESTING:BOOL=ON ... [path to catalyst src dir]





Using -G Ninja results in CMake generating build files for Ninja. You can
switch to using any other supported generator of your choice. See CMake Docs [https://cmake.org/documentation/]
for details.


Supported CMake Options

Important CMake [https://cmake.org] options that affect how Catalyst is built are:


	CATALYST_BUILD_SHARED_LIBS (default: ON): choose whether to build static
or shared libraries for Catalyst. To support switching of Catalyst
implementation at runtime, you must build with CATALYST_BUILD_SHARED_LIBS
set to ON (default).


	CATALYST_BUILD_STUB_IMPLEMENTATION (default: ON): choose whether to build
the stub Catalyst implementation. When building Catalyst only to develop
another Catalyst API implementation, you may turn this option to OFF. If
OFF, no catalyst library will be built.


	CATALYST_BUILD_TESTING (default: ON): enable/disable testing. Running the
tests using ctest after a build has succeeded is a good way to verify that
your build is functional.


	CMAKE_BUILD_TYPE (default: Debug): this is used to choose whether to add
debugging symbols to the build. Supported values are Debug, Release,
MinSizeRel, and RelWithDebInfo.


	CMAKE_INSTALL_PREFIX: path where to install the libraries and headers when
requested.


	CATALYST_WITH_EXTERNAL_CONDUIT (default: OFF): Build Catalyst
against an external Conduit library. Note that this option affects
implementation compatibility (i.e., an implementation built against a
Catalyst with external Conduit will refuse to initialize from a Catalyst
with the internal Conduit and vice versa).


	CATALYST_RELOCATABLE_INSTALL (default: ON): If unset, and to any
external dependencies will be embedded into the install tree rendering it
unable to be relocated to other machines without similar setup.


	CATALYST_WRAP_PYTHON (default: OFF): Build python wrappers for
Catalyst and Conduit.


	CATALYST_WRAP_FORTRAN (default: OFF): Build Fortran wrappers for
Catalyst and Conduit.









            

          

      

      

    

  

    
      
          
            
  
Catalyst for Simulation Developers

This section describes how simulation (and other computational codes) can use
Catalyst.


Building with Catalyst

To use the Catalyst API in any code, the code must be built against an
implementation of the Catalyst API. While one can use any implementation of the
Catalyst API, the stub implementation is probably the easiest to build against
since it doesn’t have any external dependencies besides compiler tools.

There are two ways codes can build with Catalyst: using CMake [https://www.cmake.org], or using any
build tool like make [https://www.gnu.org/software/make/].


Using CMake

If your code already uses CMake as the build system generator, then to use
Catalyst APIs, you simply need to find the Catalyst install using find_package
and the link against the catalyst::catalyst target. This is done as follows:

 1# Find the Catalyst install.
 2#
 3# The version is optional but recommended since it lets you choose
 4# the compatibility version. The only supported value currently is 2.0
 5#
 6# REQUIRED ensures that CMake raises errors if Catalyst is not found
 7# properly.
 8
 9find_package(catalyst 2.0 REQUIRED)
10
11
12# Your simulation will have an executable (or a library) that
13# houses the main-loop in which you'll make the Catalyst API falls.
14# You need to link that executable (or the library) target with Catalyst.
15# This is done as follows (where simulation_target must be replaced by the
16# name of the correct executable (or library) target.
17
18target_link_library(simulation_target
19  PRIVATE catalyst::catalyst)





Now, when you run cmake on your simulation code, a new cache variable
catalyst_DIR can be set to the directory containing the file catalyst-config.cmake
to help CMake find where you built Catalyst. That file can be found in either the
Catalyst build directory or the Catalyst install directory.



Using make (or similar)

If not using CMake as the build system generator for your simulation code, it is
still easy to make it aware of Catalyst. You simply need to pass the include
path i.e. the location where the Catalyst headers are available, and the
location and library to link against.

In a typical Catalyst install at location, CATALYST_INSTALL_PREFIX, these are:


	Include path: <CATALYST_INSTALL_PREFIX>/include/catalyst-2.0


	Library path: <CATALYST_INSTALL_PREFIX>/lib


	Library:      <CATALYST_INSTALL_PREFIX>/lib/libcatalyst.so




Using gcc, for example, this translates to the following command-line:

gcc test_driver.c -I<CATALYST_INSTALL_PREFIX>/include/catalyst-2.0 <CATALYST_INSTALL_PREFIX>/lib/libcatalyst.so.3








Catalyst API

Catalyst API is used by simulations to invoke Catalyst for co-processing. To use
the Catalyst API, one must include the catalyst.h header file.


catalyst_initialize

enum catalyst_status catalyst_initialize(const conduit_node* params);





This function must be called once to initialize Catalyst. Metadata that can be
used to configure the initialize is provided using a params pointer.

The catalyst will attempt to load the implementation named using
params["catalyst_load/implementation"]. If not specified, but the
CATALYST_IMPLEMENTATION_NAME environment variable is, it will be used. If
no implementation is named, a default implementation using the stub functions
will be used.

If an implementation is named, it will be loaded at runtime using dlopen
(or the platform equivalent) by searching the nodes specified under the
params["catalyst_load/search_paths"] node. Next, the paths specified by
the CATALYST_IMPLEMENTATION_PATHS (using ; as a separator on Windows
and : otherwise) will be searched. Finally, the catalyst directory
beside libcatalyst will be searched. Once found, it will be loaded and
inspected for compatibility. If it is compatible, the implementation will be
loaded and made available. The return code indicates the error received, if
any.

The search priority of the CATALYST_IMPLEMENTATION_ environment variables
may be made first by setting teh CATALYST_IMPLEMENTATION_PREFER_ENV
environment variable to a non-empty value.



catalyst_finalize

enum catalyst_status catalyst_finalize(const conduit_node* params);





This function must be called once to finalize Catalyst. Metadata is passed using
params pointer.



catalyst_execute

enum catalyst_status catalyst_execute(const conduit_node* params);





This function is called for every time step as the simulation advances. This is
the call in which the analysis may execute. params provides metadata as well
as the data generated by the simulation for that time-step.



catalyst_about

enum catalyst_status catalyst_about(conduit_node* params);





This function fills up the params instance with metadata about the Catalyst
library being used.



catalyst_results

enum catalyst_status catalyst_results(conduit_node* params);





This function fills up the params instance with updated parameters values
from the Catalyst implementation side.

All the above functions use a params object which is a conduit_node [https://llnl-conduit.readthedocs.io/en/latest/tutorial_cpp_basics.html]. It is
simply a hierarchical mechanism for describing data and/or metadata including
simulation meshes and fields. Essentially, think of it as a map where keys are
strings called paths and values are either data or pointers to data. What these
keys can be and what they mean is totally up to the Catalyst API implementation
being used.

To create and populate the conduit_node instance, you use the Conduit C API.
e.g.

conduit_node* node = conduit_node_create();
conduit_node_set_path_int(node, "sim/timestep", 0);
conduit_node_set_path_double(node, "sim/time", 1.212);
...
conduit_node_destroy(node);





Refer to Conduit [https://llnl-conduit.readthedocs.io/en/latest/conduit.html] documentation for details of the C API. [TODO: there are
no docs for Conduit C API upstream].






            

          

      

      

    

  

    
      
          
            
  
Catalyst for Implementation Developers

Developers can develop custom implementations for the Catalyst API to support
a wide variety of use-cases. In most cases, however, if your goal is to use
ParaView for in situ data processing, it may be easier to simply use
ParaView Catalyst. It support several ways for describing computational
meshes and field arrays including Mesh Blueprint [https://llnl-conduit.readthedocs.io/en/latest/blueprint_mesh.html#mesh-blueprint] and Fides [https://gitlab.kitware.com/vtk/fides].

This section describes the workflow for those who want to implement a custom
implementation for the Catalyst API.


Prerequisites

To build a custom Catalyst implementation, your project needs to be a
CMake-based project i.e. use CMake as the build system generator. While
it is technically feasible to use a non-CMake based project, it is highly
recommended to use CMake.




CMake Setup

The following sample CMakeLists.txt shows how to build a Catalyst
implementation.

 1# When implementing the Catalyst API, as against using
 2# it to invoke Catalyst, one must use the component
 3# ``SDK`` in ``find_package`` call. This ensures that all necessary
 4# libraries etc. are available.
 5find_package(catalyst
 6             REQUIRED
 7             COMPONENTS SDK)
 8
 9# use this function call to create a Catalyst API implementation.
10catalyst_implementation(
11  TARGET  MyCustomCatalystImpl
12  NAME    MyImplName
13  SOURCES MyCustomCatalystImpl.cxx)





That is it! catalyst_implementation creates the library with the appropriate
CMake target-properties on the library including setting its name and version
number. This function is only available when the SDK component is explicitly
requested in the find_package(catalyst .. ) call.

For more advanced usage, the following arguments are also supported:



	EXPORT <export>: Add the target to the named export set.


	LIBRARY_DESTINATION <destination>: Where to place the
implementation underneath the build and install trees (with reasonable
defaults if not provided).


	CATALYST_TARGET <target>: The name of the target which provides the
Catalyst API (defaults to catalyst::catalyst).









Implementing Catalyst API

Providing an implementation for the Catalyst API implies providing code for the
five catalyst_ functions that are part of the Catalyst API:


	catalyst_initialize_MyImplName


	catalyst_finalize_MyImplName


	catalyst_execute_MyImplName


	catalyst_about_MyImplName


	catalyst_results_MyImplName




To do that, simply include catalyst.h and catalyst_impl_MyImplName.h
headers in your implementation file and add definitions for these functions.
Definitions for all the five functions must be provided. You can choose to
invoke the default stub implementation for any of the functions by including
the catalyst_stub.h header and then calling catalyst_stub_initialize,
catalyst_stub_finalize, catalyst_stub_execute, catalyst_stub_about or
catalyst_stub_results in your implementations for the corresponding methods.

If your custom implementation is using C++, you can include
c/conduit_cpp_to_c.hpp headers to convert the conduit_node pointer to a
conduit::Node instance pointer using conduit::cpp_node(). Then you can use
the conduit::Node API which is generally friendlier than the C API.

 1#include <catalyst.h>
 2#include <conduit.hpp>            // for conduit::Node
 3#include <conduit_cpp_to_c.hpp>   // for conduit::cpp_node()
 4
 5...
 6
 7enum catalyst_status catalyst_about_MyImplName(conduit_node* params)
 8{
 9  // convert to conduit::Node
10  conduit::Node &cpp_params = (*conduit::cpp_node(params));
11
12  // now, use conduit::Node API.
13  cpp_params["catalyst"]["capabilities"].append().set("adaptor0");
14}





On successful build of your project, you should get a shared library named
libcatalyst-ImplName.so, libcatalyst-ImplName.so, or
catalyst-ImplName.dll on Linux, macOS, and Windows respectively.



Using your Catalyst implementation

Now, to use your implementation with any simulation or code built with the stub
Catalyst implementation, all you need to do is to make sure your Catalyst
library is found and loaded by catalyst_initialize.





            

          

      

      

    

  

    
      
          
            
  
Debugging and Catalyst Replay

To simplify the process of debugging in-situ pipelines, catalyst now
supports the serialization of conduit_nodes. During each API call,
users can write the params argument of each API call out to disk.
Then, using catalyst_replay, the nodes will be read back in,
and each API call will be invoked again. This prevents users from
needing to re-run their simulation when debugging.


Serializing Nodes and Writing to Disk

To use the catalyst_replay command, nodes must first be written to disk.
The steps to do this are simple:


	Set the environment variable CATALYST_DATA_DUMP_DIRECTORY to the directory
where the node data for each API invocation should be saved.


	Invoke the stub implementation in your custom API implementation.




This will write the conduit_node passed into the API call out to
CATALYST_DATA_DUMP_DIRECTORY. The conduit_nodes are written out as
.conduit_bin files. They will follow the general pattern
<stage>_params.conduit_bin.<num_ranks>.<rank>, where:


	<stage> is one of initialize, execute or finalize.


	<num_ranks> is the number of MPI ranks that the simulation was run with.


	<rank> is the 0 based index of the rank used to generate this file.




Files for the execute stage will also include the invocation number,
since catalyst_execute can be called multiple times. For example,
execute_invc0_params.conduit_bin.2.1 would contain the params passed
into the 0th invocation of catalyst_execute, which was called by 2nd of
two ranks (since rank indices are 0-indexed).



Replaying API Calls with catalyst_replay

After the node data has been written out to disk, the catalyst_replay
command can be used to read the node data back into memory and execute the
same API calls. Find the catalyst_replay executable in the
RUNTIME_OUTPUT_DIRECTORY generated by CMake (this is usually bin/).
Run catalyst_replay with the same number of MPI ranks as the simulation
used to generate the data, and pass the value of CATALYST_DATA_DUMP_DIRECTORY
as a command-line argument. This invoke each API method with the corresponding node
data. For an example, see the examples/replay directory.





            

          

      

      

    

  

    
      
          
            
  
Debugging Catalyst

Catalyst supports some facilities to debug its loading procedures.


CATALYST_DEBUG

The CATALYST_DEBUG environment variable may be set to a non-empty value to
log the search and loading procedures for catalyst implementations.





            

          

      

      

    

  

    
      
          
            

Index



 




            

          

      

      

    

  nav.xhtml

    
      Table of Contents


      
        		
          Catalyst
        


        		
          What is Catalyst?
        


        		
          Build and Install
        


        		
          Catalyst for Simulation Developers
        


        		
          Catalyst for Implementation Developers
        


        		
          Debugging and Catalyst Replay
        


        		
          Debugging Catalyst
        


      


    
  

_static/plus.png





_static/file.png





_static/minus.png





