
Catalyst Documentation

Catalyst Development Team

Mar 25, 2024

CONTENTS:

1 What is Catalyst? 3
1.1 Relationship with ParaView . 3
1.2 Relationship with Conduit . 3
1.3 ParaView Catalyst . 3
1.4 Catalyst API Implementations . 4
1.5 License . 4
1.6 Citing . 4

2 Build and Install 7
2.1 Obtaining the source . 7
2.2 Building . 7

3 Catalyst for Simulation Developers 9
3.1 Building with Catalyst . 9
3.2 Catalyst API . 10

4 Catalyst for Implementation Developers 13
4.1 CMake Setup . 13
4.2 Implementing Catalyst API . 14
4.3 Using your Catalyst implementation . 15

5 Debugging and Catalyst Replay 17
5.1 Serializing Nodes and Writing to Disk . 17
5.2 Replaying API Calls with catalyst_replay . 17

6 Debugging Catalyst 19
6.1 CATALYST_DEBUG . 19

i

ii

Catalyst Documentation

This document refers to the Catalyst API which was first introduced in ParaView 5.9. For earlier versions of Catalyst,
please refer to earlier docs.

CONTENTS: 1

https://www.paraview.org/files/catalyst/docs/ParaViewCatalystUsersGuide_v2.pdf

Catalyst Documentation

2 CONTENTS:

CHAPTER

ONE

WHAT IS CATALYST?

Catalyst is an API specification developed for simulations (and other scientific data producers) to analyze and visualize
data in situ.

It also includes the following:

• A light-weight implementation of the Catalyst API. This implementation is called stub.

• An SDK for developers to develop implementations of the Catalyst API to perform custom data processing and
visualization tasks.

The Catalyst API uses ‘C’ and is binary compatible with different implementations of the API making it easier to
change the implementation at runtime.

1.1 Relationship with ParaView

Starting with 5.9, ParaView releases come with an implementation of the Catalyst API. This implementation can be
used in lieu of the stub to analyze and visualize simulation results using ParaView’s data-processing and visualization
capabilities.

1.2 Relationship with Conduit

The Catalyst API uses Conduit for describing data and other parameters which can be communicated between a simu-
lation and Catalyst.

Conduit provides a standard way to describe computational simulation meshes. This is called the Mesh Blueprint.
ParaView’s implementation of the Catalyst API supports a subset of the Mesh Blueprint. Simulations that can use
the Mesh Blueprint to describe their data can directly use ParaView’s Catalyst implementation for in situ analysis and
visualization.

1.3 ParaView Catalyst

ParaView Catalyst is the name now used to refer to ParaView’s implementation of the Catalyst API. Prior to this
API separation (i.e. ParaView 5.8 and earlier), ParaView Catalyst or simply Catalyst was used to denote the in situ
API together with the data analysis and visualization capabilities it provided. In other words, the in-situ capabilities of
ParaView were collectively called Catalyst.

With ParaView 5.9, while legacy uses will still be supported for a few more releases, we use the names to refer to
specific components:

3

https://llnl-conduit.readthedocs.io/en/latest/index.html
https://llnl-conduit.readthedocs.io/en/latest/blueprint_mesh.html#mesh-blueprint

Catalyst Documentation

• Catalyst: the API and SDK described here.

• ParaView: the parallel data analysis and visualization application and framework.

• ParaView Catalyst: the implementation of the Catalyst API that uses ParaView for in situ data analysis and
visualization.

ParaView Catalyst supports several ways for simulations to describe computational meshes and fields. One way is to
use Conduit’s Mesh Blueprint. Another way is to use Fides.

Furthermore, developers can develop their own implementations of the Catalyst API and still use ParaView’s capabili-
ties for in situ data processing and visualization. ParaView provides API that such developers can use to initialize and
invoke ParaView in situ.

1.4 Catalyst API Implementations

Known implementations of the Catalyst API include:

• ParaView Catalyst

• Adios Catalyst

• Ascent Catalyst

1.5 License

Catalyst is distributed under the OSI-approved BSD 3-clause License. See here for details.

1.6 Citing

When citing Catalyst in your scientific research, please mention the following work to support increased visibility and
dissemination of our software:

Ayachit, U., Bauer Andrew C., Boeckel Ben, Geveci Berk, Moreland Kenneth, O`Leary␣
→˓Patrick, Osika Tom (2021). Catalyst Revised: Rethinking the ParaView in Situ Analysis␣
→˓and Visualization API. In: Jagode, H., Anzt, H., Ltaief, H., Luszczek, P. (eds) High␣
→˓Performance Computing. ISC High Performance 2021. Lecture Notes in Computer Science(),␣
→˓vol 12761. Springer, Cham. https://doi.org/10.1007/978-3-030-90539-2_33

For your convenience here is a bibtex entry:

@InProceedings{catalyst_revised2021,
author="Ayachit, Utkarsh and Bauer, Andrew C. and Boeckel, Ben and Geveci, Berk and␣

→˓Moreland, Kenneth and O'Leary, Patrick and Osika, Tom",
editor="Jagode, Heike and Anzt, Hartwig and Ltaief, Hatem and Luszczek, Piotr",
title="Catalyst Revised: Rethinking the ParaView in Situ Analysis and Visualization API

→˓",
booktitle="High Performance Computing",
year="2021",
publisher="Springer International Publishing",
address="Cham",
pages="484--494",

(continues on next page)

4 Chapter 1. What is Catalyst?

https://llnl-conduit.readthedocs.io/en/latest/blueprint_mesh.html#mesh-blueprint
https://gitlab.kitware.com/vtk/fides
https://kitware.github.io/paraview-docs/nightly/cxx/group__Insitu.html
https://docs.paraview.org/en/latest/Catalyst/index.html
https://gitlab.kitware.com/paraview/adioscatalyst
https://gitlab.kitware.com/paraview/catalyst/-/blob/master/License.txt

Catalyst Documentation

(continued from previous page)

isbn="978-3-030-90539-2",
doi="10.1007/978-3-030-90539-2_33"

}

1.6. Citing 5

Catalyst Documentation

6 Chapter 1. What is Catalyst?

CHAPTER

TWO

BUILD AND INSTALL

2.1 Obtaining the source

To obtain the Catalyst source locally, clone the official code repository using Git.

git clone https://gitlab.kitware.com/paraview/catalyst.git

2.2 Building

Catalyst uses CMake to generate build system scripts and projects, such as Makefiles or Ninja build files. While IDE
generators (Xcode and Visual Studio) are supported, Ninja is highly recommended.

To do a fresh build, start with an empty directory as follows:

mkdir catalyst-build
cd catalyst-build
ccmake -G Ninja [path to catalyst source directory]

do the build
cmake --build .

optionally, run tests
ctest

do the install
cmake --install .

ccmake is a graphical GUI that lets you specify various options for CMake. On Windows cmake-gui can be
used. Alternately, those options can be specified on command line to cmake using -Doption:type=value (or
-Doption=value) parameters as follows:

cmake -G Ninja -DCATALYST_BUILD_TESTING:BOOL=ON ... [path to catalyst src dir]

Using -G Ninja results in CMake generating build files for Ninja. You can switch to using any other supported
generator of your choice. See CMake Docs for details.

7

https://git-scm.com/
https://ninja-build.org
https://cmake.org/documentation/

Catalyst Documentation

2.2.1 Supported CMake Options

Important CMake options that affect how Catalyst is built are:

• CATALYST_BUILD_SHARED_LIBS (default: ON): choose whether to build static or shared libraries for Catalyst. To
support switching of Catalyst implementation at runtime, you must build with CATALYST_BUILD_SHARED_LIBS
set to ON (default).

• CATALYST_BUILD_STUB_IMPLEMENTATION (default: ON): choose whether to build the stub Catalyst implemen-
tation. When building Catalyst only to develop another Catalyst API implementation, you may turn this option
to OFF. If OFF, no catalyst library will be built.

• CATALYST_BUILD_TESTING (default: ON): enable/disable testing. Running the tests using ctest after a build
has succeeded is a good way to verify that your build is functional.

• CMAKE_BUILD_TYPE (default: Debug): this is used to choose whether to add debugging symbols to the build.
Supported values are Debug, Release, MinSizeRel, and RelWithDebInfo.

• CMAKE_INSTALL_PREFIX: path where to install the libraries and headers when requested.

• CATALYST_WITH_EXTERNAL_CONDUIT (default: OFF): Build Catalyst against an external Conduit library. Note
that this option affects implementation compatibility (i.e., an implementation built against a Catalyst with external
Conduit will refuse to initialize from a Catalyst with the internal Conduit and vice versa).

• CATALYST_RELOCATABLE_INSTALL (default: ON): If unset, and to any external dependencies will be embedded
into the install tree rendering it unable to be relocated to other machines without similar setup.

• CATALYST_WRAP_PYTHON (default: OFF): Build python wrappers for Catalyst and Conduit.

• CATALYST_WRAP_FORTRAN (default: OFF): Build Fortran wrappers for Catalyst and Conduit.

8 Chapter 2. Build and Install

https://cmake.org

CHAPTER

THREE

CATALYST FOR SIMULATION DEVELOPERS

This section describes how simulation (and other computational codes) can use Catalyst.

3.1 Building with Catalyst

To use the Catalyst API in any code, the code must be built against an implementation of the Catalyst API. While one
can use any implementation of the Catalyst API, the stub implementation is probably the easiest to build against since
it doesn’t have any external dependencies besides compiler tools.

There are two ways codes can build with Catalyst: using CMake, or using any build tool like make.

3.1.1 Using CMake

If your code already uses CMake as the build system generator, then to use Catalyst APIs, you simply need to find the
Catalyst install using find_package and the link against the catalyst::catalyst target. This is done as follows:

1 # Find the Catalyst install.
2 #
3 # The version is optional but recommended since it lets you choose
4 # the compatibility version. The only supported value currently is 2.0
5 #
6 # REQUIRED ensures that CMake raises errors if Catalyst is not found
7 # properly.
8

9 find_package(catalyst 2.0 REQUIRED)
10

11

12 # Your simulation will have an executable (or a library) that
13 # houses the main-loop in which you'll make the Catalyst API falls.
14 # You need to link that executable (or the library) target with Catalyst.
15 # This is done as follows (where simulation_target must be replaced by the
16 # name of the correct executable (or library) target.
17

18 target_link_library(simulation_target
19 PRIVATE catalyst::catalyst)

Now, when you run cmake on your simulation code, a new cache variable catalyst_DIR can be set to the directory
containing the file catalyst-config.cmake to help CMake find where you built Catalyst. That file can be found in
either the Catalyst build directory or the Catalyst install directory.

9

https://www.cmake.org
https://www.gnu.org/software/make/

Catalyst Documentation

3.1.2 Using make (or similar)

If not using CMake as the build system generator for your simulation code, it is still easy to make it aware of Catalyst.
You simply need to pass the include path i.e. the location where the Catalyst headers are available, and the location
and library to link against.

In a typical Catalyst install at location, CATALYST_INSTALL_PREFIX, these are:

• Include path: <CATALYST_INSTALL_PREFIX>/include/catalyst-2.0

• Library path: <CATALYST_INSTALL_PREFIX>/lib

• Library: <CATALYST_INSTALL_PREFIX>/lib/libcatalyst.so

Using gcc, for example, this translates to the following command-line:

gcc test_driver.c -I<CATALYST_INSTALL_PREFIX>/include/catalyst-2.0 <CATALYST_INSTALL_
→˓PREFIX>/lib/libcatalyst.so.3

3.2 Catalyst API

Catalyst API is used by simulations to invoke Catalyst for co-processing. To use the Catalyst API, one must include the
catalyst.h header file.

3.2.1 catalyst_initialize

enum catalyst_status catalyst_initialize(const conduit_node* params);

This function must be called once to initialize Catalyst. Metadata that can be used to configure the initialize is provided
using a params pointer.

The catalyst will attempt to load the implementation named using params["catalyst_load/implementation"].
If not specified, but the CATALYST_IMPLEMENTATION_NAME environment variable is, it will be used. If no implemen-
tation is named, a default implementation using the stub functions will be used.

If an implementation is named, it will be loaded at runtime using dlopen (or the platform equivalent) by searching
the nodes specified under the params["catalyst_load/search_paths"] node. Next, the paths specified by the
CATALYST_IMPLEMENTATION_PATHS (using ; as a separator on Windows and : otherwise) will be searched. Finally,
the catalyst directory beside libcatalyst will be searched. Once found, it will be loaded and inspected for com-
patibility. If it is compatible, the implementation will be loaded and made available. The return code indicates the error
received, if any.

The search priority of the CATALYST_IMPLEMENTATION_ environment variables may be made first by setting teh
CATALYST_IMPLEMENTATION_PREFER_ENV environment variable to a non-empty value.

10 Chapter 3. Catalyst for Simulation Developers

Catalyst Documentation

3.2.2 catalyst_finalize

enum catalyst_status catalyst_finalize(const conduit_node* params);

This function must be called once to finalize Catalyst. Metadata is passed using params pointer.

3.2.3 catalyst_execute

enum catalyst_status catalyst_execute(const conduit_node* params);

This function is called for every time step as the simulation advances. This is the call in which the analysis may execute.
params provides metadata as well as the data generated by the simulation for that time-step.

3.2.4 catalyst_about

enum catalyst_status catalyst_about(conduit_node* params);

This function fills up the params instance with metadata about the Catalyst library being used.

3.2.5 catalyst_results

enum catalyst_status catalyst_results(conduit_node* params);

This function fills up the params instance with updated parameters values from the Catalyst implementation side.

All the above functions use a params object which is a conduit_node. It is simply a hierarchical mechanism for
describing data and/or metadata including simulation meshes and fields. Essentially, think of it as a map where keys
are strings called paths and values are either data or pointers to data. What these keys can be and what they mean is
totally up to the Catalyst API implementation being used.

To create and populate the conduit_node instance, you use the Conduit C API. e.g.

conduit_node* node = conduit_node_create();
conduit_node_set_path_int(node, "sim/timestep", 0);
conduit_node_set_path_double(node, "sim/time", 1.212);
...
conduit_node_destroy(node);

Refer to Conduit documentation for details of the C API. [TODO: there are no docs for Conduit C API upstream].

3.2. Catalyst API 11

https://llnl-conduit.readthedocs.io/en/latest/tutorial_cpp_basics.html
https://llnl-conduit.readthedocs.io/en/latest/conduit.html

Catalyst Documentation

12 Chapter 3. Catalyst for Simulation Developers

CHAPTER

FOUR

CATALYST FOR IMPLEMENTATION DEVELOPERS

Developers can develop custom implementations for the Catalyst API to support a wide variety of use-cases. In most
cases, however, if your goal is to use ParaView for in situ data processing, it may be easier to simply use ParaView
Catalyst. It support several ways for describing computational meshes and field arrays including Mesh Blueprint and
Fides.

This section describes the workflow for those who want to implement a custom implementation for the Catalyst API.

Prerequisites

To build a custom Catalyst implementation, your project needs to be a CMake-based project i.e. use CMake as the
build system generator. While it is technically feasible to use a non-CMake based project, it is highly recommended to
use CMake.

4.1 CMake Setup

The following sample CMakeLists.txt shows how to build a Catalyst implementation.

1 # When implementing the Catalyst API, as against using
2 # it to invoke Catalyst, one must use the component
3 # ``SDK`` in ``find_package`` call. This ensures that all necessary
4 # libraries etc. are available.
5 find_package(catalyst
6 REQUIRED
7 COMPONENTS SDK)
8

9 # use this function call to create a Catalyst API implementation.
10 catalyst_implementation(
11 TARGET MyCustomCatalystImpl
12 NAME MyImplName
13 SOURCES MyCustomCatalystImpl.cxx)

That is it! catalyst_implementation creates the library with the appropriate CMake target-properties on the library
including setting its name and version number. This function is only available when the SDK component is explicitly
requested in the find_package(catalyst ..) call.

For more advanced usage, the following arguments are also supported:

• EXPORT <export>: Add the target to the named export set.

• LIBRARY_DESTINATION <destination>: Where to place the implementation underneath the build and install
trees (with reasonable defaults if not provided).

13

https://llnl-conduit.readthedocs.io/en/latest/blueprint_mesh.html#mesh-blueprint
https://gitlab.kitware.com/vtk/fides

Catalyst Documentation

• CATALYST_TARGET <target>: The name of the target which provides the Catalyst API (defaults to
catalyst::catalyst).

4.2 Implementing Catalyst API

Providing an implementation for the Catalyst API implies providing code for the five catalyst_ functions that are
part of the Catalyst API:

• catalyst_initialize_MyImplName

• catalyst_finalize_MyImplName

• catalyst_execute_MyImplName

• catalyst_about_MyImplName

• catalyst_results_MyImplName

To do that, simply include catalyst.h and catalyst_impl_MyImplName.h headers in your implementation file and
add definitions for these functions. Definitions for all the five functions must be provided. You can choose to invoke
the default stub implementation for any of the functions by including the catalyst_stub.h header and then calling
catalyst_stub_initialize, catalyst_stub_finalize, catalyst_stub_execute, catalyst_stub_about
or catalyst_stub_results in your implementations for the corresponding methods.

If your custom implementation is using C++, you can include c/conduit_cpp_to_c.hpp headers to convert the
conduit_node pointer to a conduit::Node instance pointer using conduit::cpp_node(). Then you can use the
conduit::Node API which is generally friendlier than the C API.

1 #include <catalyst.h>
2 #include <conduit.hpp> // for conduit::Node
3 #include <conduit_cpp_to_c.hpp> // for conduit::cpp_node()
4

5 ...
6

7 enum catalyst_status catalyst_about_MyImplName(conduit_node* params)
8 {
9 // convert to conduit::Node

10 conduit::Node &cpp_params = (*conduit::cpp_node(params));
11

12 // now, use conduit::Node API.
13 cpp_params["catalyst"]["capabilities"].append().set("adaptor0");
14 }

On successful build of your project, you should get a shared library named libcatalyst-ImplName.so,
libcatalyst-ImplName.so, or catalyst-ImplName.dll on Linux, macOS, and Windows respectively.

14 Chapter 4. Catalyst for Implementation Developers

Catalyst Documentation

4.3 Using your Catalyst implementation

Now, to use your implementation with any simulation or code built with the stub Catalyst implementation, all you need
to do is to make sure your Catalyst library is found and loaded by catalyst_initialize.

4.3. Using your Catalyst implementation 15

Catalyst Documentation

16 Chapter 4. Catalyst for Implementation Developers

CHAPTER

FIVE

DEBUGGING AND CATALYST REPLAY

To simplify the process of debugging in-situ pipelines, catalyst now supports the serialization of conduit_nodes. During
each API call, users can write the params argument of each API call out to disk. Then, using catalyst_replay, the
nodes will be read back in, and each API call will be invoked again. This prevents users from needing to re-run their
simulation when debugging.

5.1 Serializing Nodes and Writing to Disk

To use the catalyst_replay command, nodes must first be written to disk. The steps to do this are simple:

1. Set the environment variable CATALYST_DATA_DUMP_DIRECTORY to the directory where the node data for each
API invocation should be saved.

2. Invoke the stub implementation in your custom API implementation.

This will write the conduit_node passed into the API call out to CATALYST_DATA_DUMP_DIRECTORY. The
conduit_nodes are written out as .conduit_bin files. They will follow the general pattern <stage>_params.
conduit_bin.<num_ranks>.<rank>, where:

1. <stage> is one of initialize, execute or finalize.

2. <num_ranks> is the number of MPI ranks that the simulation was run with.

3. <rank> is the 0 based index of the rank used to generate this file.

Files for the execute stage will also include the invocation number, since catalyst_execute can be called multiple
times. For example, execute_invc0_params.conduit_bin.2.1 would contain the params passed into the 0th
invocation of catalyst_execute, which was called by 2nd of two ranks (since rank indices are 0-indexed).

5.2 Replaying API Calls with catalyst_replay

After the node data has been written out to disk, the catalyst_replay command can be used to read
the node data back into memory and execute the same API calls. Find the catalyst_replay executable
in the RUNTIME_OUTPUT_DIRECTORY generated by CMake (this is usually bin/). Run catalyst_replay
with the same number of MPI ranks as the simulation used to generate the data, and pass the value of
CATALYST_DATA_DUMP_DIRECTORY as a command-line argument. This invoke each API method with the correspond-
ing node data. For an example, see the examples/replay directory.

17

Catalyst Documentation

18 Chapter 5. Debugging and Catalyst Replay

CHAPTER

SIX

DEBUGGING CATALYST

Catalyst supports some facilities to debug its loading procedures.

6.1 CATALYST_DEBUG

The CATALYST_DEBUG environment variable may be set to a non-empty value to log the search and loading procedures
for catalyst implementations.

19

	What is Catalyst?
	Relationship with ParaView
	Relationship with Conduit
	ParaView Catalyst
	Catalyst API Implementations
	License
	Citing

	Build and Install
	Obtaining the source
	Building
	Supported CMake Options

	Catalyst for Simulation Developers
	Building with Catalyst
	Using CMake
	Using make (or similar)

	Catalyst API
	catalyst_initialize
	catalyst_finalize
	catalyst_execute
	catalyst_about
	catalyst_results

	Catalyst for Implementation Developers
	CMake Setup
	Implementing Catalyst API
	Using your Catalyst implementation

	Debugging and Catalyst Replay
	Serializing Nodes and Writing to Disk
	Replaying API Calls with catalyst_replay

	Debugging Catalyst
	CATALYST_DEBUG

